
NASA/CR- 1998-206910

ICASE Report No. 98-6

Multigrid Strategies for Viscous Flow Solvers

on Anisotropic Unstructured Meshes

Dimitri J. Mavriplis

ICASE

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

II

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

January 1998

Prepared for Langley Research Center
under Contracts NAS 1-19480 & NAS 1-97046



Available from the following:

NASA Center for AeroSpace Information (CASI)

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650



MULTIGRID STRATEGIES FOR VISCOUS FLOW SOLVERS ON ANISOTROPIC

UNSTRUCTURED MESHES

DIMITRI J. MAVRIPLIS *

Abstract. Unstructured multigrid techniqud_"fo_ relieving the stiffness associated with high-Reynolds

number viscous flow simulations on extremely stretched grids are investigated. One approach consists of

employing a semi-coarsening or directional-coarsening technique, based on the directions of strong coupling

within the mesh, in order to construct more optimal coarse grid levels. An alternate approach is developed

which employs directional implicit smoothing with regular fully coarsened multigrid levels. The directional

implicit smoothing is obtained by constructing implicit lines in the unstructured mesh based on the directions

of strong coupling. Both approaches yield large increases in Convergence rates over the traditional explicit full-

coarsening multigrid algorithm. However, maximum benefits are achieved by combining the two approaches

in a coupled manner into a single algorithm. An order of magnitude increase in convergence rate over

the traditional explicit full-coarsening algorithm is demonstrated, and convcrgence rates for high-Reynolds

number viscous flows which are independent of the grid aspect ratio are obtained. Further acceleration

is provided by incorporating low-Mach-number preconditioning techniques, and a Newton-GMRES strategy

which employs the multigrid scheme as a preconditioner. The compounding effects of these various techniques

on speed of convergence is documented through several example test cases.
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1. Introduction. Multigrid methods have proven to be very effective techniques for accelerating con-

vergence to steady state of both elliptic and hyperbolic problems. For simple elliptic problems, such as

a Poisson equation, convergence rates of 0.1 are achievable, meaning that for each multigrid cycle, the

numerical error can be reduced by one order of magnitude.

For hyperbolic problems, such as the Euler equations in computational fluid dynamics, the best rate that

theoretically can be achieved for a second order discretization is 0.75, according to the analysis discussed by

Mulder [24]. Indeed, many structured as well as unstructured Euler solvers achieve convergence rates close to

0.75 [30, 36, 15, 25, 26]. However, for high-Reynolds number viscous flow solutions, multigrid Navier-Stokes

solvers generally result in convergence rates which are an order of magnitude or more slower than those

obtained for inviscid flows. The main reason for this breakdown in efficiency of the multigrid algorithm is

the use of highly stretched anisotropic meshes which are required to efficiently resolve boundary layer and

wake regions in viscous flows. Indeed, the higher the Reynolds number, the more grid stretching is required,

and the worse the convergence rate becomes. This poses particular difficulties for simulating flight Reynolds

number flows for large aircraft, where the required meshes may contain stretching ratios in excess of 100,000

to 1.

The classic multigrid remedy for this problem is to resort to semi-coarsening, or to employ smoothers

which are implicit in the direction normal to the stretching [3]. The idea of semi-coarsening is to coarsen the
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mesh only in the direction normal to the grid stretching, rather than in all coordinate directions simultane-

ously. This idea was used by Mulder [24, 23] to overcome the stiffness associated with thc grid alignment

phenomenon for an upwind scheme on non-stretched structured meshes. Since different regions of the flow

field may contain anisotropies in differing directions, a complete sequence of grids, each coarsened in a single

coordinate direction is generally required, tLudespiel and Swanson [29] employed semi-coarsening to alleviate

the stiffness due to stretched meshes for viscous flow calculations. More recently, Allmaras [1] has shown how

the use of preconditioners coupled with semi-coarsening can help alleviate grid stretching induced stiffness.

Pierce and Ciles [26] have demonstrated improved convergence rates for turbulent Navier-Stokes flows using

diagonal preconditioning coupled with a J-coarsening technique on structured grids, where the grid is only

coarsened in the J-coordinate direction, which is normal to the boundary layer.

Semi-coarsening techniques can be generalized to unstructured meshes as directional coarsening methods.

Graph algorithms can be constructed to remove mesh vertices based on the local degree and direction of

anisotropy in either the grid or the discretized equations. This is achieved by basing point removal decisions

on the values of the discrete stencil coefficients. This is the basis for algebraic multigrid methods [34], which

operate on sparse matrices directly, rather than on geometric meshes. These techniques are more general than

those available for structured meshes, since they can deal with multiple regions of anisotropies in conflicting

directions. They offer the possibility of constructing algorithms which attempt to generate the "optimal"

coarse grid for the problem at hand. Morano et al. [21] have demonstrated how such techniques can produce

almost identical convergence rates for a Poisson equation on an isotropic cartesian mesh, and a highly

stretched unstructured mesh. More recently, Francescatto [6] has demonstrated convergence improvements

for the Navier-Stokes equations using directional coarsening multigrid.

One of the drawbacks of semi- or directional-coarsening techniques is that they result in coarse grids of

higher complexity. While a full-coarsening approach reduces grid complexity between successively coarser

levels by a factor of 4 in 2D, and 8 in 3D, semi-coarsening techniques only achieve a grid complexity

reduction of 2, in both 2D and 3D. This increases the cost of a multigrid V-cycle, and makes the use of

W-cycles impractical. Perhaps more importantly for unstructured mesh calculations, the amount of memory

required to store the coarse levels is dramatically increased, particularly in 3D. Raw [31] advocates the use of

directional coarsening, but at a fixed coarsening rate of 10 to 1, in order to reduce overheads. This generally

results in the removal of multiple neighboring points in the coarsening process, and thus requires a stronger

smoother than a simple explicit scheme. An alternative to semi-coarsening is to use aline solver in the

direction normal to the grid stretching coupled with a regular full coarsening mnltigrid algorithm, at least

for structured grid problems [3].

In the following sections, we examine the benefits obtained through the use of directional coarsen-

ing and implicit line solvers, and combine the two approaches to construct an efficient Reynolds averaged

Navier-Stokes solver for very highly stretched meshes. The resulting algorithm is then augmented by a

preconditioning technique and a Krylov method.

2. Base Solver . The Reynolds averaged Navier-Stokes equations are discretized by a finite-volume

technique on meshes of mixed triangular and quadrilateral elements. A sample mesh is depicted in Figure

2.1. Isotropic triangular elements are employed in regions of inviscid flow, and stretched quadrilateral

elements are used in the boundary layer and wake regions. All elements of the grid are handled by a single

unifying edge-based data-structure in the flow solver [19]. Triangular elements could easily be employed in

the boundary layer regions simply by splitting each quadrilateral element into two triangular elements.



Ft_. 2.1. Mized element grid used for _iscous flow calculations about

NACA 001_ airfoil; Number of vertices = 4880

As shown in Figure 2.2, the resulting control-volumes for quadrilateral elements produce stencils with

strong coupling in the direction normal to the grid stretching (i.e. large control volume faces) and weak

coupling in the direction of stretching. When triangular elements are employed in regions of high mesh

stretching, the stencils are complicated by the presence of diagonal connections, and do not decouple as simply

in the normal and stretching directions as for quadrilateral elements. Therefore, the use of quadrilateral

elements in regions of high mesh stretching is central to the solution algorithms described in this paper.

Alternatively, one could chose to retain triangular elements throughout the entire mesh, and employ different

types of dual control-volumes, such as a containment dual rather than median-dual based control-volume

[2].

FIG, 2,2. Median control-volumes for stretched quadrilateral and triangu-

lar elements

For the convectivc terms, three different fmite-volume discretizations have been implemented. The

upwind scheme relies on a Roc Rieman solver [33] to compute a flux at the control-volume interfaces.

Second-order accuracy is achieved hy extrapolating vertex based variables to the control-volume interfaces

based on gradient information evaluated by Green-Gauss contour integration around each control-volume

boundary. Shock capturing is achieved using thc smooth limiter of Venkatakrishnan [43]. This discrctization

is used exclusively in the preliminary study of sections 3 through 5'

The upwind scheme can be formulated as a central difference scheme with added dissipation, where the

dissipation is constructed as a set of transformation matrices multiplied by the difference in left and right

reconstructed states at a control-volume boundary. A matrix-based artificial dissipation scheme is obtained



by utilizingthesesametransformationmatrices,but using them to multiply a difference of blended first

and second differences rather than a difference of reconstructed states at control-volume boundaries. The

traditional scalar artificial dissipation scheme is obtained by replacing the four eigenvalues u, u, u ÷ c, u - c

in the transformation matrices of the matrix dissipation model by the maximum eigenvalue [u I ÷ c, where u

and c denote local fluid velocity and speed of sound, respectively. This scheme corresponds to the original

scheme of Jameson et al. [8]. The scalar and matrix-based artificial dissipation schemes arc used in sections

6 through 8.

The thin-layer form of the NavieroStokes equations is employed in all cases, and the viscous terms

are discretized to second-order accuracy by finite-difference approximation. For multigrid calculations, a

first-order discretization is employed for the convective terms on the coarse grid levels for all cases.

The basic time-stepping scheme is a three-stage explicit multistage scheme with stage coefficients op-

timized for high frequency damping properties [41], and a CFL number of 1.8. Convergence is accelerated

by a local block Jacobi preconditioner, which involves inverting a 4 × 4 matrix for each vertex at each

stage [32, 22, 25, 26]. This approach, which can either be interpreted as a pre-conditioner, or as a local

matrix time-step [11], has been shown to produce superior convergence rates for upwind schemes. No other

techniques such as enthalpy damping or residual smoothing are employed [8].

The single equation turbulence model of Spalart and Allmaras [38] is utilized to account for turbulence

effects. This equation is discretized and solved in a manner completely analogous to the flow equations, with

the exception that the convective terms are only discretized to first-order accuracy.

3. Directional-Coarsening . In the context of unstructured meshes, there exists various strategies

for implementing multigrid techniques. Two approaches that have been explored extensively by the author

are the method of overset meshes, and the method of control-volume agglomeration [15, 37, 10, 18]. In the

overset-mesh approach, a sequence of fine and coarse unstructured meshes is constructed either by hand,

or in some automated fashion. These meshes are then employed in the multigrid algorithm, and variables

are transferred bctween the various meshes of the sequence using linear interpolation. In the agglomeration

approach, coarse levels are constructed by fusing together neighboring fine grid control volumes to form a

smaller number of larger and more complex control volumes on the coarse grid.

While directional coarsening strategies can be employed in both multigrid approaches, for practical rea-

sons we have chosen to utilize only the overset-mesh multigrid approach for these preliminary investigations.

In fact, the same coarsening algorithm may be used for both approaches. In the overset-mesh approach, the

graph coarsening algorithm is employed to select a subset of points from the fine grid from which the coarse

grid will be formed. Once the coarse grid points have been determined, they must be triangulated in order

to form a consistent coarse grid.

The coarsening algorithm is based on a weighted graph. Each edge of the mesh is assigned a weight

which represents the degree of coupling in the discretization. In the true algebraic multigrid sense, these

weights should be formed from the stencil coefficients. However, since the Navier-Stokes equations represent

a system of equations, multiple coefficients exist for each edge. For simplicity, the edge weights are taken as

the inverse of the edge length. For each fine grid vertex, the average and the maximum weight of all incident

edges are precomputed and stored. This ratio of maximum to average weight is an indication of the local

anisotropy in the mesh at each vertex. The coarsening algorithm begins by choosing an initial vertex as a

coarse grid point or seed point, and attempts to remove neighboring points by examining the corresponding

edge weights. If the ratio of maximum to average weights at the seed point is greater than a, (usually taken

as a -- 4), then only the neighboring vertex along the edge of maximum weight is removed. Otherwise, (i.e.



in isotropicregions)all neighboringedgesareremoved.Thenextseedpointis thentakenfromapriority
listwhichcontainspointswhichareadjacentto pointswhichhavepreviouslybeendeleted.

In thepresentimplementation,thegraph-basedcoarseningalgorithmisonlyemployedin theboundary-
layerandwakeregions.Oncetheseregionshavebeencoarsened,theremainingregionsof thedomainare
regriddedusingaDelaunayadvancing-fr0nttechniquewithuserspecifiedresolution.Thisapproachispurely
forconvenience,sincetheoriginalmeshisgeneratedbyatwo-stepprocedure,whichemploysanadvancing-
layerstechniquein theregionsofviscousflow,andanadvancing-frontDelaunaytriangulationin regionsof
inviscidflow[16,17].Thefull weighted-graphcoarseningalgorithmwill beimplementedin thecontextof
agglomerationmultigridin futurework.

¢4

s

_" 100 200 _ 400 fd]0 _0

Number of MG Cycles

Fro. 3.1. Multigrid Convergence Rate using Explicit Smoothing and _ull-

Coarsening for inviscid flow over NACA 001_ airfoil

The first test case illustrates the convergence rates achievable for isotropic problems with the present

algorithm. The inviscid transonic flow over a NACA 0012 airfoil is computed at a Mach number of 0.73

and incidence of 2.31 degrees. The mesh contains 5849 vertices and consists uniquely of isotropic triangular

elements. The convergence history is documented in Figure 3.1. A total of 5 multigrid levels were employed,

and a residual reduction of 11 orders of magnitude over 100 multigrid W-cycles was obtained. The overall

convergence rate for this case is 0.77, which is very close to the theoretical limit of 0.75.

The second test case illustrates the stiffness induced by anisotropy. The viscous turbulent flow over

the same geometry at the same conditions with a Reynolds number of 5 million is computed on the mesh

depicted in Figure 2.1. This mesh contains a total of 4880 points. The cells on the airfoil surface have a

height of 2.e-06 chords, and the maximum cell aspect ratio in the mesh is 20,000. This type of mesh is

required in order to capture the boundary layer gradients. The computed Mach contours at these conditions

are displayed in Figure 3.2. The convergence rate is depicted in Figure 3.3, using 5 multigrid levels which

were constructed using the unweighted or full-coarsening version of the coarsening algorithm, as described

in [18].

The slowdown in convergence over the inviscid test case is dramatic. After an initial phase of rapid

convergence, the residual reduction rate slows down to less than 0.99 per multigrid W-cycle. Figure 3.3

also depicts the convergence rate of the same algorithm when a sequence of directionally coarsened grids is



employedin themultigridalgorithm.The improvement is substantial, yiclding a residual reduction of 0.91

per multigrid V-cycle.
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FIG. 3.3. Comparison of Multigrid Convergence Rate

using Explicit Smoothing and b-_dl-Coarsening versus Ex-

plicit Smoothing and Semi-Coarsening ,for viscous flow

over NACA 001_ airfoil

4. Directional Implicit Smoothers . Although directional coarsening strategies for multigrid can

achieve large increases in convergence speed, as demonstrated in the previous case, the coarse grids are more

complex than those obtained in the full coarscning strategy. Note for example in the previous case that a

V-cycle was required, since the W-cycle is impractical in this case (the amount of work involved is unbounded

as the number of grid levcls increases). As mentioned previously, the overhead required to store the coarse

levels is also greatly increased in such cases.

An alternative approach is to use a directionally implicit smoother in conjunction with 5all coarsening

multigrid. For structured grids, an example of a directionally implicit smoother is a line solver. Linc

solvers are attractive because they result in block-tridiagonal matrices which can be solved very cfficiently.

For unstructured grids, predetermined grid lines do not exist. However, line solvers can still bc employcd,

provided lines are artificially constructed in the unstructured grid. Techniques for constructing lines in an

unstructured grid have previously been described in the literature [7, 13]. In those efforts, lines which span

the entire grid were constructed using unweighted graph techniques. In the present context, the role of the

line solver is to relieve the stiffness induced by grid anisotropy. Therefore, lines are desirable only in regions

of strong anisotropy, and in these regions they must propagate along the direction of strong coupling.

Given these requirements, an algorithm to build lines in an anisotropic mesh can be constructed using

a weighted graph technique, in a manner analogous to the algorithm for directional coarsening described

previously. The edge weights are defined as previously, and the ratio of maximum to average adjacent edge

weight is pre-computed for every mesh vertex. The vertices are then sorted according to this ratio. The

first vertex in this ordered list is then picked as the starting point for a line. The line is built by adding to

the original vertex the neighboring vertex which is most strongly connected to the current vertex, provided



this vertex does not already belong to a line, and provided the ratio of maximum to minimum edge weights

for the current vertex is greater than a, (using a = 4 in all cases). The line terminates when no additional

vertex can be found. If the originating vertex is not a boundary point then the procedure must bc repeated

beginning at the original vertex, and proceeding with the second strongest connection to this point. When

the entire line is completed, a new line is initiated by proceeding to the next available vertex in the ordered

list. Ordering of the initial vertex list in this manner ensures that lines originate in regions of maximum

anisotropy, and terminate in isotropic regions of the mesh. The algorithm results in a sct of lines of variable

length. In isotropic regions, lines containing only one point are obtained, and the point-wise scheme is

recovered.

On vector machines, the block-tridiagonal line solves must be vectorizcd across the lines. Because

the lines have varying lengths, all lines must be made of similar length by padding thc matrices of the

shorter lines with zeros on the off-diagonals and ones on the diagonal entrics, in such a way that zero

additional corrections are generated at these locations by the implicit solver. To minimize the amount of

padding required, the lines are sorted into groups, such that within each group, all lines are close in size to

one another. Vectorization then takes place over the lines within each group. The size of the group also

determines the amount of memory required for the line solves, since the tridiagonal matrices are constructed

just prior to, and discarded just after the lines are solved, and all lines are uncoupled. For scMar machines,

lines may be processed individually, and the memory requirements (i.e. additional working memory required

by the implicit solver) are determined by the length of the longest line in the grid.

The implicit system generated by the set of lines can be viewed as a simplification of the general Jacobian

obtained from a linearization of a backwards Euler time discretization, where tlw Jacobian is that obtained

from a first-order discretization, assuming a constant Roe matrix in the linearization. For block-diagonal

preconditioning, all off-diagonal block entries are deleted, while in the line-implicit method, the block entries

corresponding to the edges which constitute the lines are preserved. The implicit line solver is applied as

a preconditioner to the three-stage explicit scheme described previously. At each stage in the multi-stage

scheme, the corrections previously obtained by multiplying the residual vector by the inverted block-diagonal

matrix are replaced by corrections obtained by solving the implicit system of block-tridiagonal matrices

generated from the set of lines. This implementation has the desirable feature that it reduces exactly to the

block-diagonal preconditioned multi-stage scheme when the line length becomes one (i.e. 1 vertex and zero

edges), as is the case in isotropic regions of the mesh.

As an example, the viscous flow case of the previous section has been recomputcd using the line-implicit

solver with full-coarsening multigrid. The set of lines generated in the mesh of Figure 2.1 are depicted in

Figure 4.1. The lines extend through the boundary layer and wake regions, and have mostly a length of 1

(i.e. 1 vertex and zero edges) in the regions of inviscid flow where the mesh is isotropic. A total of 5 meshes

was employed in the multigrid sequence. The convergence rate for this algorithm is depicted in Figure 4.2.

The residuals are reduced by over 4 orders of magnitude in 100 cycles, which corresponds to a residual

reduction rate of 0.92 per multigrid W-cycle. This rate is close to that obtained by the point-wise scheme

using directional coarsening. However, the coarse grids are of lower complexity in this case and a W-cycle

has been used.
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FlC. 4.2. Comparison of Multigrid Convergence Rate

using Explicit Smoothing and Full Coarsening versus Im-

plicit Line Solver and Full-Coarsening/or viscous flow over

NACA 001_ airfoil

5. Combining Directional Coarsening and Smoothing . There are obvious similarities between

the directional coarsening algorithm and the technique used to construct lines for the directional implicit

method. These two techniques can be combined, in a coupled manner, to produce a more robust and efficient

overall algorithm. The simplest way to combine these techniques is to use the pre-conditioned line-implicit

smoother with a sequence of directionally coarsened coarse multigrid levels. In order to more closely couple

these two techniques, we use exactly the same criteria for coarsening and for line construction. This ensures

that coarsening will proceed in the same direction and along the lines determined for the implicit solver.

An example of this combined algorithm is depicted by the convergence plot in Figure 5.1. In this case,

the combined directional-implicit-coarsening algorithm has been used to solve the same viscous turbulent

flow as described in the previous sections. The fine mesh for this case is similar to the one displayed in Figure

2.1, but contains 5828 points, and the mesh cells near the airfoil boundary have a height of 2.e-07 chord

lengths, and the maximum aspect-ratio cell in the mesh is 200,000. This represents an order of magnitude

more anisotropy than the previous mesh. While this type of normal boundary layer resolution is probably

excessive for the present case, it is nonetheless representative of what is required for flight Reynolds number

simulations of large aircraft. Even on this extremely stretched grid, the residuals are reduced by over 4 orders

of magnitude over 100 cycles, which results in a average convergence rate of 0.92 per multigrid V-cycle. This

rate is comparable to that achieved by either algorithm separately on the previous case. However, on this

more highly stretched grid, neither algorithm alone could deliver this type of performance. Furthermore, the

monotonic behavior of the current convergence history is a good indication of robustness.
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FIG. 5.1. Multigrid Convergence Rate using Implicit Line-Solver and

Semi-Coarsening for viscous flow over NACA 0019, airfoil

On the other hand, this case is still plagued by the high coarse grid complexities of the semi-coarsening

approach. However, these two techniques, directional coarsening and directional implicit smoothing, are

two strategies for treating the same problem. In this respect they are more overlapping in nature than

complementary, and one of these techniques may be relaxed somewhat. We therefore propose to perform

directional-coarsening as described previously, along the direction of the implicit lines, but at a faster coars-

ening rate of 4:1. Therefore, rather than remove every second point Mong the implicit lines, we remove three

points for every preserved coarse grid point along the implicit lines. In isotropic regions, the coarsening

algorithm remains unchanged. This has the effect of generating a sequence of coarse grids which has roughly

the same complexity as that obtained by the full-coarsening technique. To illustrate this approach, the same

case has been recomputed using the line-implicit smoother and directional coarsening at a 4:1 rate. The

convergence rate is compared with that obtained previously in Figure 5.1. The average residual reduction

rate for this case is 0.88. The fact that this rate is even faster than that achieved in the previous example is

attributed to the use of W-cycles in the current calculation, which is made possible due to the low complexity

of the coarse grids.

6. Insensitivity to Aspect-Ratio and Discretization . While the above results are encouraging,

they represent a single data point for a relatively easy problem on a relatively coarse grid. The goal of this

section is to demonstrate the robustness of the present approach for more difficult and realistic problems, as

well as the insensitivity of the approach to different discretization schemes and varying grid aspcct-ratios.

The first test case consists of the computation of transonic flow over an RAE 2822 airfoil at a Mach

number of 0.73, an incidence of 2.31 degrees, and a Reynolds number of 6.5 million. Three different grids were

used for this computation. All three grids contain the same distribution of boundary points, but different

resolutions in the direction normal to the boundary and wake regions. The first grid contains a normal wall

spacing of 10 -s chords, and a total of 12,568 points, while the second grid contains a normal wall spacing



of 10 -6 chords, and 16,167 points, and the third grid a normal wall spacing of 10 -7 chords, and 19,784

points. The cells in the boundary layer and wake regions are generated using a geometric progression of 1.2

for all three grids. The second grid contains what is generally regarded as suitable normal and streamwise

resolution for accurate computation of this type of problem, while the first and third grids are most likely

under-resolved and over-resolved in the direction normal to the boundary layer, respectively. The second

grid is displayed in Figure 6.1, while the Mach contours of the solution computed on this grid are displayed

in Figure 6.2.

The solution algorithm is the same as described previously, namely directional coarsening multigrid

combined with implicit line solvers. Coarsening in the boundary layer and wake regions occurs at a 4:1 rate,

and the multigrid W-cycle is used exclusively. All results were obtained using the three-stage multi-stage

scheme described previously. A five-stage scheme yielded faster convergence rates on a per cycle basis, but

broke even on a cost (cpu time) basis. The matrix-based artificial dissipation discretization described in

section 2 is used in this case. This scheme makes use of the same transformation matrices as the upwind

scheme, but utilizes these to multiply a difference of second-differences rather than a difference of left and

right reconstructed states. (First-order dissipation is omitted).
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FIG. 6.1. Uns_ructurv.d Grid Used Sor Compufafion o] FTc. 6.2. Computed Mach Contours on above Grid.

Transonic Flow Over RAE _8_ Air]oil. Number of Points Mach = 0.73, Incidence = $.31 degrees, Re = 6.5 million

= 16167, Wall Resolution --- 10 -s chords

Figure 6.3 depicts the observed convergence rates on all three grids for the matrix dissipation scheme.

A twelve order reduction in the residuals is reached in all cases between 200 and 300 multigrid cycles. Given

that these three grids represent a two-order-of-magnitude variation in grid aspect ratio, these convergence

rates can be qualified as essentially insensitive to the degree of grid anisotropy.

Figure 6.4 depicts the convergence rates of similar computations using the scalar dissipation model.

The scalar dissipation model, which corresponds to the original scheme of Jameson et al [8], is obtained by

replacing the four eigenvalues u, u, u + c, u- c in the transformation matrices of the matrix dissipation model

by the maximum eigenvalue lut-t-c. In this case, all matrices become diagonal and the dissipation is decoupled

between the four equations of the system. The Jacobi preconditioning matrix also becomes diagonal, and

the Jacobi preconditioner reduces to local scalar time-stepping I26]. The convergence rates in Figure 6.4

for this scheme are somewhat slower than those observed for the matrix dissipation model in Figure 6.3.

However, they are relatively insensitive to the degree of grid stretching, and are much faster than the rates

10



achieved by the corresponding full-coarsening explicit multigrid algorithm (c.f. Figure 7.3). It is interesting

to note that the convergence rate actually improves with increased grid anisotropy. This is perhaps duc to

the fact that the line solver more closely approximates a direct solver as the grid stretching increases. It

should be noted that no averaging of the eigenvalues between the streamwise and normal directions has been

performed in these cases. Such averaging techniques have typically been required to enhance convergence

for scalar dissipation schemes on stretched grids [14, 28].

According to the analysis presented in [26], a scalar dissipation scheme of this type should be much more

difficult to converge on highly stretched grids than a matrix-based dissipation scheme. Indeed, in a matrix

or upwind dissipation discretization, only the acoustic modes are strongly coupled in the direction normal

to the boundary layer when large grid stretching is present. This is due to the fact that the flow is mostly

aligned with the grid in these regions, and thus the low normal dissipation due to flow alignment naturally

counter-balances the stronger coupling due to the large grid aspect ratio, for the convective modes. The

fact that the present algorithm is capable of efficiently converging the scalar-dissipation discrctization and

does so independently of the degree of grid stretching is a good indication of the robustness of the present

approach. Furthermore, this property is important even for upwind and matrix dissipation discrctizations

in regions where the flow may not be aligned with highly stretched grid cells, such as in wake regions where

the grid stretching does not accurately correspond to the physical wake direction.
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sipation Scheme

__ I.c-05NORMAL SPACING

- _ _ I.e-06NORMAL SPACING

....... l.e 07 NORMAL SPACING

•"-..__

4..

[ i I i I
10o 2od 300 4O0 SOO 6oo

Number of MG Cycles

F_G. 6.4. Comparison of Converyence Rates oh-

tamed on Grids of Differing Normal Resolution using

Directional-Coarsening-Implicit Multigrid for Scalar Dis-
sipation Scheme

7. Relieving Other Types of Stiffness . While the results of the previous section illustrate the

insensitivity of the present algorithm to grid aspect ratio and discretization models, the observed convergence

rates remain substantially slower than those obtained for an isotropic inviscid problem, as in Figure 3.1, for

example. Since thc present scheme is insensitive to the grid aspect ratio, this slowdown is most likely due

to other types of stiffness in the system of equations to be solved. For example, the disparity in eigenvalues

caused by a very low Mach number flow cannot bc adequately handled by the present approach. This type of
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stiffness,whichis inherentin thegoverningequations,ratherthandueto thegridtopology,isoftentreated
usingpreconditioningtechniques[40,11,4, 44]. Conversely,it is nowwellknownthat physicallybased
preconditionerscanbeusedto constructmoreeffectivemultigridsmoothers[12,42].

Inafirststeptowardsfurtherimprovingtheconvergenceratesofthepresentscheme,alowMachnumber
preconditionerhasbeenimplementedinconjunctionwiththedirectional-coarsening-smoothingscheme.The
particularimplementationadoptedfollowstheapproachdescribedin [27],whichisbasedon theprecondi-
tionerof [4,44].Thisimplementationisattractivebecauseit doesnotrequireanychangeofvariablesin the
currentcode.Traditionally,suchpreconditionersaredescribedasamatrixmultiplyinganexplicitupdating
scheme,andasimilarmatrix-basedmodificationto thedissipationterms,whichimprovestheaccuracyat
lowMachnumbers.Thus,anoriginal(first-order)matrix-baseddissipationexplicitscheme:

neighbors
Awi

(7. 1 v°l,-X-i7 = }2
k=l

1
_(F(wi) + F(wk)).nik -- _ IAik l(wk - w_)

is replaced by:

(7.2)
neighbors

P-'(Voli._)= E
k=l

_(F(wi) + F(wk)).rak - _p-1 ipA_k[(w k _ w,)

whcre P is the preconditioning matrix, and p-1 ipA_kl is the matrix modification to the dissipation terms.

In the above equations, wi represents the flow variables at vertex i and wk represents the flow variables at

neighboring vertices k of i. The convective fluxes are denoted by F(w), nik represents the normal vector of

the control volume face separating the neighboring vertices i and k, and Aik is the flux Jacobian evaluated

in thc direction normal to this face.

In thc present work, we wish to implement this type of "preconditioner" in the context of a point-

implicit (Jacobi-preconditioned) or line-implicit scheme. Since the low Mach number preconditioning matrix

is a point-wise matrix, its implementation for point-implicit schemes is similar as for line-implicit, or any

implicit scheme. The point-implicit scheme is derived by setting the right-hand-side on equation (7.1)

equal to zero, and solving these equations with a Newton iteration, where only the (block-diagonal) entries

corresponding to point i are retained in the Newton Jacobian. The flux F(wi) does not contribute to this

3acobian, since it is integrated around the closed boundary of the control volume forpoint i. The resulting

point-implicit scheme can be written as:

(7.3)
neighbors neighbors

k=l k=l

1
l(F(w_) + F(Wk)).nik -- _lAik[(Wk --Wi)

In the scalar dissipation case, the matrix A_k becomes diagonal, and the summation multiplying the correc-

tion on the left-hand side represents the usual time-step estimate:

12



neighbors
(7.4) Voli_t--7 = ( _ IAikl)

k=l

thus verifying that this scheme reduces to local time-stepping for scalar dissipation discretizations. Taking

the point-wise linearization of the modified discretization (i.e. right-hand-side of equation (7.2)) leads to the

scheme:

neighbors neighbors

(7.5) ( _ _P-11pAikl)Awi=
k=l k=l

F(wi) + F(wk)).nik -- _p-11pAikl(w k _ wi)

Using equation (7.4), for the scalar dissipation case, the scheme described by equation (7.5) is equivalent to

that described by equation (7.2) provided one uses a locally averaged value of the preconditioning matrix,

and the appropriate eigcnvalues of the modified system are used in the time-step estimate. Therefore, low

Mach number preconditioning may be implemented by simply modifying the dissipation matrices as per

equation (7.2), and taking this modification into account in the point-wise linearization that is required for

the Jacobi scheme or preconditioner. The low Mach number "preconditioning" matrix arises naturally from

this linearization. This offers a different view-point of the mechanism involved for relieving low Mach number

stiffness in compressible flow formulations. Rather than a technique which attempts to alter the time history

of the convergence process, this type of "preconditioning" may be thought of as one which simply alters the

discretization of an implicit scheme to yield a more consistent and less stiff system of equations.

Figure 7.1 depicts the convergence rates achieved by the directional-coarsening-implicit multigrid scheme

combined with low Mach number preconditioning for the matrix dissipation discretization for flows at various

Mach numbers over an RAE 2822 airfoil on the grid of Figure 6.1 (normal wall resolution of 10 -6 chords).

While the un-preconditioned cases slow down dramatically with decreasing freestream Mach number, the

preconditioned cases produce convergence rates which are virtually identical over a two-order-of-magnitude

variation in the freestream Mach number. In order to prevent singularities at stagnation points, the specifi-

cation of a cutoff Mach number is required [44, 27], below which preconditioning is omitted. This is generally

specified as a function of the freestream Mach number. In this study, the required cutoff value was such that

no preconditioning could be applied in the transonic case.

Figure 7.2 illustrates the same convergence histories for the scalar dissipation scheme. The non-

preconditioned convergence rates for all Mach numbers arc slower for the scalar dissipation scheme than

for the matrix dissipation scheme, as expected. However, the preconditioned convergence rates for the two

schemes are almost identical. These convergence rates are also relatively insensitive to the freestream Mach

number. Even the transonic case benefits from preconditioning when scalar dissipation is employed. This is

attributed to the use of a lower cutoff Mach number which was possible only in the scalar dissipation scheme.
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for Scalar Dissipation Scheme

In Figure 7.3, we return to the transonic ease, and compare the pre_conditioncd directional-coarsening-

implicit multigrid scheme with the full coarsening explicit multigrid scheme for the scalar dissipation dis-

cretization. This figure contrasts the decaying convergence rates of the original algorithm as the grid stretch-

ing increases, with the insensitivity of the improved algorithm to grid stretching. Thc original algorithm

employs a five stagc scheme with residual smoothing, while the current algorithm employs a three-stage

scheme with no residual smoothing but with directional line solves. Although the current algorithm is a

factor of 4 more expensive than the original algorithm, on a per cycle basis, this is mainly due to incomplete

optimization and higher coarse grid complcxities in the inviscid regions of flow. It is expected that the

current algorithm can be made to be approximately equal to the original algorithm on a per-cycle basis

through additional optimization and reduction in coarse grid complexity.

The current algorithm has been employed to compute the flow over a three-clement airfoil geometry.

Thc grid employed for this computation is shown in Figure 7.4. The grid contains a total of 30562 points,

and a normal spacing of 10 -5 chords at the wall and in the near wake regions. The implicit Lines extractcd

from this grid by the algorithm are depicted in Figure 7.5. They occur mainly in thc boundary-layer and

wake regions.
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for Mach= O. 73 case (scalar dissipation scheme)

A qualitative view of the computed Mach contours is depicted in Figure 7.6. The freestream Mach

number is 0.2, and the incidence and Reynolds number are 16 degrees and 5 million, respectively. The

convergence rates obtained for the scalar dissipation scheme on this case are depicted in Figure 7.7. The

original full-coarsening explicit multigrid algorithm converges very slowly in the asymptotic range. The

directional-coarsening-implicit scheme delivers substantially faster convergence, but is still much slower than

that observed for the transonic cases. The low-Mach number preconditioned version of this latter scheme

provides substantially faster convergence, yielding an asymptotic convergence rate of 0.955 prior to the

slowdown after 300 cycles, using a three-stage smoother. This rate is still somewhat slower than that

achieved by the same algorithm for the single airfoil cases. This is attributed to the use of a global cutoff

Mach number in the low-Mach number preconditioner [44, 27], which is required to prevent singularities

in regions of stagnation flow. Inspection of the flow in the three-elcment airfoil case reveals much larger

regions of very low Mach number flow as compared to the single airfoil cases (for the same freestream Mach

number). The use of a global cutoff based on the freestream Mach number is obviously inconsistent with

the notion of a local preconditioner. However, as documented in the literature, it has been found that this

type of cutoff is required for robustness. Further research is required to resolve this problem.
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FIG. 7.4, Unstructured Grid Used for Computation

of Subsonic Flow Over Three-Element Airfoil Geometry..
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cretization

8. Incorporating a Krylov Acceleration Technique:Precondltionlng 3 . Further gains in ef-

ficiency can be obtained by incorporating a Krylov acceleration technique, such as GMRES [35]. In the

present context, the low-Mach number preconditioned directional-coarsening multigrid scheme, using the

line-implicit smoother (which itself may be viewed as a preconditioner) is used as a preconditioner to GM-

RES, thus the term Preconditioning 3. This approach has been demonstrated previously for multigrid-based
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solvers in the literature [45, 25]. GMRES can be formulated to solve a set of non-linear equations in a

matrix-free manner by computing Jacobian-vector products by finite differencing the residual vcctor. This

approach is particularly attractive since it may be implemented as an addition to an existing solver with

minimal modifications to the existing code.

The addition of GMRES incurs little additional cpu time, measured on a multigrid cycle basis, but

requires considerable additional memory, since a solution vector must be stored for each of the Krylov search

directions. Typically, 20 to 30 search directions are employed. The GMRES subroutine employed in this

work is the one developed in [45].
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FIG. 8.1. Comparison of Convergence Rates obtained on Grid of Figure

6.1 using Various Multigrid Schemes for Transonic Case using Scalar Dissi-

pation

Figure 8.1 depicts the convergence rate obtained using the preconditioned GMRES technique with 20

search directions for the transonic flow over an RAE 2822 airfoil using the scalar dissipation discretization,

and compares it with several variants of the algorithms discussed in the preceding sections. As can be

seen, the addition of the GMRES routine to the low-Mach number preconditioned directional-coarsening

line-implicit scheme nearly doubles the convergence rate as compared to the same scheme without GMRES.

The asymptotic convergence rate of this scheme is 0.87 per multigrid cycle, which is only a factor of 2 away

from the optimum goal of 0.75.

Figure 7.7 depicts the same schemes applied to the three-element airfoil case. In this case, the addition

of GMRES using 30 search directions produces a smaller gain in speed of convergence, at least prior to the

slowdown exhibited by the best non-GMRES scheme after 8 orders of magnitude residual reduction. It is of

academic interest that GMRES is successful in eliminating this slowdown, since engineering computations

would not normally be carried out this far. The best asymptotic convergence rate achieved is roughly 0.945,

which is approximately twice as slow as that achieved for the single airfoil transonic case. This is thought to

be due to the presence of larger regions of lower velocity fluid in the domain. Figures 7.7 and 8.1 summarize

the relative gains achieved by the various schemes and their compounding effects for these two cases.
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9. Further Work . In the above discussion, the comparisons between various schemes are made on a

per cycle basis. While this is useful for determining the relative effectiveness of each technique as a multigrid

smoother, and the degree to which the overall algorithm approaches the hypothetical "optimal" algorithm,

it does not convey the relative costs of these various schemes. One of the reasons direct cpu comparisons

have not been made is that the current code is not sufficiently optimized to provide a fair comparison with

the baseline algorithm. Another reason, is that the technique used for coarse grid construction results in less

than optimal coarse grid complexity since the inviscid regions of the flow are actually regridded, rather than

coarsened by point removal. (However, the boundary layer and wake regions exhibit optimal coarsening).

On the other hand, given the magnitude of the gains in speed of convergence, it should bc evident that

even the currently non-optimized implementation is much more efficient than the original scheme. While the

current algorithm is roughly a factor of 4 more costly on a per cycle basis than the original explicit multigrid

algorithm with residual smoothing, it is anticipated that this cost can be reduced to be comparable to that

of the explicit multigrid algorithm.

The ultimate goal of this work is to incorporate these techniques into the more practical agglomeration

or algebraic multigrid method described in [18, 20]. The development of an optimal grid coarsening scheme

for agglomeration multigrid is currently under development. Figure 9.1 illustrates the first agglomerated

level of a stretched unstructured grid, where the agglomeration has been constrained to proceed along the

implicit-lines in the boundary layer regions, at a rate of 4:1. In the isotropic regions of the mesh, this

algorithm reverts to that developed in [18, 20].

The use of line solvers can lead to additional complications for distributed memory parallel implemen-

tations. Since the classical tridiagonal line solve is an inherently sequential operation, any line which is split

between multiple processors will result in processors remaining idle while the off-processor portion of their

line is computed on a neighboring processor. However, the topology of the line sets in the unstructured grid

is such that it should be possible to partition the mesh in such a manner that lines are completely contained

within an individual processor, with minimal penalty (in terms of processor imbalance or additional numbers

of cut edges).

Fro. 9.1. Example of Agglomerated Grid Using 4:1 Coarsening along

Lines in Boundary-Layer Region

This can be achieved by using a graph-based mesh partitioner with weights assigned to each edge. High

edge weights correspond to edges which should not be cut between partitions. Figure 9.2 illustrates a 32-way
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partitionon the unstructured grid of Figure 7.4 , using the partitioner described in [9], both with uniform

weights, and with large weights assigned to the edges which constitute thc implicit-lines for the flow solver

(c.f. Figure 7.5). While the un-weighted partition results in 269 cut lines, the weighted partition results in

no cuts across lines with a 8.5 % increase in total cut edges.

Although the proposed algorithms in this work have demonstrated convergence ratcs independent of the

degree of grid stretching, the convergence rates obtained for viscous flows are still a factor of 2 to 4 slower

than what may bc achieved for simple inviscid flow problems. Additional rcscarch is required to further

reduce these rates consistently for all types of viscous flow problems. Perhaps the most promising avenue of

research is to develop more sophisticated preconditioners in an effort to providc abcttcr multigrid smoother

at low additional cost [12, 42]. Of immediate concern is the need to formulate a more consistent cutoff

criterion for low-Mach number preconditioners [39, 5].

_ ".,',_._l_'_:_, ;: _ •

(i
FIG. 9.2. Comparison of Unweighted (Left) and Weighted (Right) 32-Way Partition o] Unstructured Mesh for

Parallel Computation
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